RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
  Stem Cell Research
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Stem Cell Research Channel

subscribe to Stem Cell Research newsletter
Latest Research : Embryology : Stem Cell Research

   EMAIL   |   PRINT
Neurons grown from embryonic stem cells restore function in paralyzed rats

Jun 21, 2006 - 12:45:00 AM , Reviewed by: Priya Saxena
"This study provides a 'recipe' for using stem cells to reconnect the nervous system. It raises the notion that we can eventually achieve this in humans, although we have a long way to go."

 
[RxPG] For the first time, researchers have enticed transplants of embryonic stem cell-derived motor neurons in the spinal cord to connect with muscles and partially restore function in paralyzed animals. The study suggests that similar techniques may be useful for treating such disorders as spinal cord injury, transverse myelitis, amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy. The study was funded in part by the NIH's National Institute of Neurological Disorders and Stroke (NINDS).

The researchers, led by Douglas Kerr, M.D., Ph.D., of The Johns Hopkins University School of Medicine, used a combination of transplanted motor neurons, chemicals capable of overcoming signals that inhibit axon growth, and a nerve growth factor to attract axons to muscles. The report is published in the July 2006 issue of Annals of Neurology.

"This work is a remarkable advance that can help us understand how stem cells might be used to treat injuries and disease and begin to fulfill their great promise. The successful demonstration of functional restoration is proof of the principle and an important step forward. We must remember, however, that we still have a great distance to go," says Elias A. Zerhouni, Director of the National Institutes of Health.

"This study provides a 'recipe' for using stem cells to reconnect the nervous system," says Dr. Kerr. "It raises the notion that we can eventually achieve this in humans, although we have a long way to go."

In the study, Dr. Kerr and his colleagues cultured embryonic stem cells from mice with chemicals that caused them to differentiate into motor neurons. Just before transplantation, they added three nerve growth factors to the culture medium. Most of the cells were also cultured with a substance called dibutyrl cAMP (dbcAMP) that helps to overcome axon-inhibiting signals from myelin, the substance that insulates nerve fibers in the spinal cord.

The cells were transplanted into eight groups of paralyzed rats. Each group received a different combination of treatments. Some groups received injections of a drug called rolipram under the skin before and after the transplants. Rolipram, a drug approved to treat depression, helps to counteract axon-inhibiting signals from myelin. Some animals also received transplants of neural stem cells that secreted the nerve growth factor GDNF into the sciatic nerve (the sciatic nerve extends from the spine down the back of the hind leg). GDNF causes axons to grow toward it.

Three months after the transplants, the investigators examined the rats for signs that the stem cell-derived neurons had survived and integrated with the nervous system. The rats that had received the full cocktail of treatments – transplanted motor neurons, rolipram, dbcAMP, and GDNF-secreting neural stem cells in the sciatic nerve – had several hundred transplant-derived axons extending into the peripheral nervous system, more than in any other group. The axons in these animals reached all the way to the gastrocnemius muscle in the lower leg and formed functional connections, called synapses, with the muscle. The rats showed an increase in the number of functioning motor neurons and an approximately 50 percent improvement in hind limb grip strength by 4 months after transplantation. In contrast, none of the rats given other combinations of treatments recovered lost function.

"We found that we needed a combination of all of the treatments in order to restore function," Dr. Kerr says.

Follow-up experiments with GDNF treatment on only one side of the body showed that, by 6 months after treatment, 75 percent of rats given the full combination of treatments regained the ability to bear weight on the GDNF-treated limbs and to take steps and push away with the foot on that side of the body.

"This research represents significant progress," says David Owens, Ph.D., the NINDS program director for the grant that funded the work. "It is a convergence of embryonic stem cell research with other areas of research that we've funded, including work that uses combination therapies such as rolipram and dbcAMP, growth factors, and cells to facilitate the repair of the injured spinal cord."

Previous studies have shown that stem cells can halt spinal motor neuron degeneration and restore function in animals with spinal cord injury or ALS. However, this study is the first to show that transplanted neurons can form functional connections with the adult mammalian nervous system, the researchers say. They used both electrophysiological and behavioral studies to verify that the recovery was due to connections between the peripheral nervous system and the transplanted neurons.

"We've previously shown that stem cells can protect at-risk neurons, but in ongoing neurodegenerative diseases, there is a very small window of time to do so. After that, there is nothing left to protect," says Dr. Kerr. "To overcome the loss of function, we need to actually replace lost neurons."

While these results are promising, much work remains before a similar strategy could be tried in humans, Dr. Kerr says. The therapy must first be tested in larger animals to determine if the nerves can reconnect over longer distances and to make sure the treatments are safe. There currently is no large-animal model for motor neuron degeneration, so Dr. Kerr's group is working to develop a pig model. Researchers also need to test human embryonic stem cells to learn if they will work in the same way as the mouse cells. It has only recently become possible to grow motor neurons from human embryonic stem cells, Dr. Kerr adds. However, if the future studies go well, this type of therapy might eventually be useful for spinal muscular atrophy, ALS, and other motor neuron diseases.



Publication: Deshpande D, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin L, Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein J, Kerr D. "Recovery from Paralysis in Adult Rats Using Embryonic Stem Cells." Annals of Neurology, July 2006, Vol. 60, No. 1, pp. 22-34.
On the web: www.ninds.nih.gov 

Advertise in this space for $10 per month. Contact us today.


Related Stem Cell Research News
Researchers construct erectile tissue in rabbits
Early stage sperm cells created in laboratory
Neural stem cells derived from human embryonic stem cells carry abnormal gene expression
Neurons grown from embryonic stem cells restore function in paralyzed rats
New stem-cell findings can help the body to cure itself
Putting avian transgenics on a par with transgenic mice
Harvard to Create Human Embryonic Stem Cell Lines
Stem Cell Study for Patients with Heart Attack Damage Seeks to Regenerate Heart Muscle
Stem cells - An alternative to skin grafting?
Bone morphogenetic protein 6 (BMP-6) factor stimulates cartilage growth from stem cells

Subscribe to Stem Cell Research Newsletter

Enter your email address:


 Additional information about the news article
The NINDS is a component of the National Institutes of Health (NIH) within the Department of Health and Human Services and is the nation's primary supporter of biomedical research on the brain and nervous system. The NINDS mission is to reduce the burden of neurological disease. Go to for more information.

The National Institutes of Health (NIH) -- The Nation's Medical Research Agency -- includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary Federal agency for conducting and supporting basic, clinical, and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)