RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
  Stem Cell Research
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Stem Cell Research Channel

subscribe to Stem Cell Research newsletter
Latest Research : Embryology : Stem Cell Research

   EMAIL   |   PRINT
SPECT/CT can trace stem cells’ destinations after being injected

Sep 14, 2005 - 9:38:00 PM
“Our study demonstrates that SPECT/CT imaging is well suited to dynamically track the biodistribution and movement of stem cells to both target and non-target organs. Such a non-invasive means of studying stem cell movement could be very helpful in monitoring therapeutic safety and efficacy in clinical trials.”

 
[RxPG] A team of scientists from the Johns Hopkins Department of Radiology and Institute of Cell Engineering has used a non-invasive imaging technique, called SPECT/CT, to successfully trace stem cells’ destinations after being injected into the body to treat animal hearts damaged by myocardial infarction, or heart attack.

In the study, researchers surgically induced acute myocardial infarctions in seven dogs, six of which later received canine mesenchymal stem cells (MSCs) labeled with a radioactive tracer and magnetic resonance imaging (MRI) contrast agent to enhance image quality. Both the tracer and contrast agent are widely used in research and routine clinical practice.

The internal distribution of the injected stem cells was tracked with SPECT/CT and MRI scanners immediately after injection as well as at multiple time points over seven days to assess whether the MSCs preferentially migrated or “homed” in on damaged cardiac tissue. Previous studies in animals were only able to demonstrate homing by examining the tissue microscopically after death.

The team’s results, reported in the Sept. 6, 2005, issue of Circulation, revealed redistribution of the radiolabeled MSCs from the initial localization in the lungs to the target organ, the heart, at 24 hours post-injection. Moreover, the cells remained visible in SPECT/CT images until seven days after the injection.

SPECT/CT also found redistribution of the MSCs to non-target organs, such as the liver, kidney and spleen. Measuring the radiation levels in tissues obtained from the animals after their death validated these finding.

MRI, because of its lower sensitivity, was unable to demonstrate targeted cardiac localization of MSCs.

“Our study demonstrates that SPECT/CT imaging is well suited to dynamically track the biodistribution and movement of stem cells to both target and non-target organs,” says lead investigator Dr. Dara L. Kraitchman, an associate professor of radiology at the Johns Hopkins Russell H. Morgan Department of Radiology and Radiological Science. “Such a non-invasive means of studying stem cell movement could be very helpful in monitoring therapeutic safety and efficacy in clinical trials.” With her co-workers, Drs. Jeff W.M. Bulte, Mark F. Pittenger, Benjamin M.W. Tsui, Randell G. Young, and Richard L. Wahl, she anticipates that this technique will useful in developing customized therapies for future patient trials.

SPECT, or single photon emission computed tomography, is a special type of emission computed tomography (ECT) scan in which a small amount of a radioactive tracer is injected into a vein, and a scanner is used to make detailed images that are highly sensitive to the location of the radioactive materials inside the body. CT, or computed tomography, uses X-rays to produce high-resolution images of the anatomical structure of the body’s interior. Combining the two techniques greatly enhances anatomical mapping and localization, permitting researchers to know more precisely what cells or organs are taking up the radiolabeled tracer.



Publication: Sept. 6, 2005, issue of Circulation
On the web: www.hopkinsmedicine.org 

Advertise in this space for $10 per month. Contact us today.


Related Stem Cell Research News
Researchers construct erectile tissue in rabbits
Early stage sperm cells created in laboratory
Neural stem cells derived from human embryonic stem cells carry abnormal gene expression
Neurons grown from embryonic stem cells restore function in paralyzed rats
New stem-cell findings can help the body to cure itself
Putting avian transgenics on a par with transgenic mice
Harvard to Create Human Embryonic Stem Cell Lines
Stem Cell Study for Patients with Heart Attack Damage Seeks to Regenerate Heart Muscle
Stem cells - An alternative to skin grafting?
Bone morphogenetic protein 6 (BMP-6) factor stimulates cartilage growth from stem cells

Subscribe to Stem Cell Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)