Spinal cord injury treatment with neural stem cells
Sep 20, 2005 - 8:38:00 PM
|
|
This work is a promising first step, and supports the need to study multiple stem cell types for the possibility of treating of human neurological injury and disease
|
By University of California, Irvine,
[RxPG] Researchers at the UC Irvine Reeve-Irvine Research Center have used adult human neural stem cells to successfully regenerate damaged spinal cord tissue and improve mobility in mice.
The findings point to the promise of using this type of cells for possible therapies to help humans who have spinal cord injuries. Additionally, transplanted cells differentiated into new neurons that formed synaptic connections with mouse neurons.
When myelin is stripped away through disease or injury, sensory and motor deficiencies result and, in some cases, paralysis can occur. Previous Reeve-Irvine research has shown that transplantation of oligodendrocyte precursors derived from human embryonic stem cells restores mobility in rats.
We were excited to find that the cells responded to the damage by making appropriate new cells that could assist in repair. This study supports the possibility that formation of new myelin and new neurons may contribute to recovery.
Mice that received human neural stem cells nine days after spinal cord injury showed improvements in walking ability compared to mice that received either no cells or a control transplant of human fibroblast cells (which cannot differentiate into nervous system cells). Further experiments showed behavioral improvements after either moderate or more severe injuries, with the treated mice being able to step using the hind paws and coordinate stepping between paws whereas control mice were uncoordinated.
The cells survived and improved walking ability for at least four months after transplantation. Sixteen weeks after transplantation, the engrafted human cells were killed using diphtheria toxin (which is only toxic to the human cells, not the mouse). This procedure abolished the improvements in walking, suggesting that the human neural stem cells were the vital catalysts for the maintained mobility.
This study differs from previous work using human embryonic stem cells in spinal cord injury because the human neural stem cells were not coaxed into becoming specific cell types before transplantation.
This work is a promising first step, and supports the need to study multiple stem cell types for the possibility of treating of human neurological injury and disease, Anderson said.
Publication:
Proceedings of the National Academy of Sciences Early Edition
On the web:
www.uci.edu.
|
Advertise in this space for $10 per month.
Contact us today.
|
|
Subscribe to Stem Cell Research Newsletter
|
|
Additional information about the news article
|
Desiree L. Salazar and Mitra Hooshmand of UCI, Nobuko Uchida and Stan J. Tamaki of StemCells Inc., and Robert Summers and Fred H. Gage of the Salk Institute of Biological Studies participated in the study. Adult human neural stem cells were provided by StemCells Inc. in Palo Alto, Calif. The National Institutes of Health and the Christopher Reeve Foundation provided funding support.
The Reeve-Irvine Research Center was established to study how injuries and diseases traumatize the spinal cord and result in paralysis or other loss of neurologic function, with the goal of finding cures. It also facilitates the coordination and cooperation of scientists around the world seeking cures for paraplegia, quadriplegia and other diseases impacting neurological function. Named in honor of Christopher Reeve, the center is part of the UCI School of Medicine.
This Reeve-Irvine Research Center study is part of a campuswide effort at UCI to lay the groundwork for new treatments and cures through responsible exploration of stem cell research.
About the University of California, Irvine: Celebrating 40 years of innovation, the University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion. For more UCI news, visit www.today.uci.edu.
|
Feedback
|
For any corrections of factual information, to contact the editors or to send
any medical news or health news press releases, use
feedback form
|
Top of Page
|