RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
  AIDS
  Anthrax
  Dengue
  Ebola
  HCV
  Influenza
  Leishmaniasis
  Malaria
  MRSA
  Mumps
  Pertussis
  Prion Diseases
  SARS
  Shigella
  Small Pox
  Tuberculosis
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Tuberculosis Channel

subscribe to Tuberculosis newsletter
Latest Research : Infectious Diseases : Tuberculosis

   EMAIL   |   PRINT
A New Biochemical Target to Attack Resistant Tuberculosis Bacteriae

Mar 16, 2005 - 12:55:00 PM
"We've been able to find at least the beginnings of a class of compounds that we can start working with and that we know is biochemically active against the TB bacteria in culture and in small animals."

 
[RxPG] A worldwide health problem, tuberculosis kills more people than any other bacterial infection. The World Health Organization estimates that two billion people are infected with TB, and that two million people die each year from the disease.

However, due to multi-drug resistance and a protracted medication regimen, it is extremely difficult to treat. Hence, there is still a great deal of interest in developing new anti-tubercular drugs.

Researchers at the University of Pennsylvania School of Medicine have identified a biochemical target that could lead to a new class of antibiotics to fight TB. They report their findings in this week's online edition of the Proceedings of the National Academy of Sciences.

In a proof-of-principle study, Harvey Rubin, MD, PhD, Professor of Medicine, Division of Infectious Diseases, and colleagues were able to stop the bacteria from multiplying by inhibiting the first step in a common biochemical pathway.

This pathway is responsible for making the energy molecules all cells need to survive.

First author Edward Weinstein, an MD/PhD student, Rubin, and colleagues characterized the pathway and showed that an important enzyme in it is a key target for anti-TB agents.

The pathway, explains Rubin, is like a series of links in a chain, with enzymes facilitating reactions along the way. "We discovered that if you inhibit the very first enzyme in the chain, you inhibit everything else downstream and eventually the bacteria die," he explains.

The research group tested phenothiazine, a drug used in the past to treat schizophrenia, in cultures of Mycobacterium tuberculosis, the bacterium that causes TB. They found that phenothiazines killed the bacterium in culture and suppressed its growth in mice with acute TB infection.

While the effect on the growth of TB in mice was small, it suggested that a valid target was identified. The research group went on to show that the enzyme disabled by the phenothiazines is called type II NADH dehydrogenase and is a unique and important antimicrobial target.

"What we have now is a new target in TB," says Rubin. "We've been able to find at least the beginnings of a class of compounds that we can start working with and that we know is biochemically active against the TB bacteria in culture and in small animals."

Is it a new drug for tuberculosis? Not yet, cautions Rubin. It's premature to say that this class of drugs will cure TB, but it does represent the start of basic research towards that, he concludes.

Next steps include more investigations on inhibitors of the NADH biochemical pathway in TB, and the development of high-throughput screens to find better and safer inhibitors of type II NADH dehydrogenase.



Publication: This week's online edition of the Proceedings of the National Academy of Sciences
On the web: University of Pennsylvania School of Medicine  

Advertise in this space for $10 per month. Contact us today.


Related Tuberculosis News
PA-824 : Promising new drug for TB
Drug resistent TB deadlier, more common than suspected
Diabetes mellitus increases risk of TB
XDR TB in South Africa traced to lack of drug susceptibility testing
Vitamin D supplements may offer cheap and effective immune system boost against TB
Tuberculin skin tests not sensitive in detecting latent TB
Emergence of highly drug-resistant tuberculosis strains requires urgent action
Treating populations infected with HIV and latent TB could speed the emergence of drug-resistant TB
Solution to TB epidemic may lie in protective Heme oxygenase 1 protein
Explaining Why People of African Descent Are More Vulnerable to TB

Subscribe to Tuberculosis Newsletter

Enter your email address:


 Additional information about the news article
This work was supported by grants from the National Institutes of Health. Rubin and Weinstein's coauthors are Takahiro Yano, Lin-Sheng Li, David Avarbock, Andrew Avarbock and Douglas Helm from Penn, and Andrew McColm, Ken Duncan, and John T. Lonsdale from GlaxoSmithKline ( Collegeville, PA and Stevenage, UK ). Animal studies were conducted at GlaxoSmithKline. Penn researchers report no conflicts of interest.

PENN Medicine is a $2.7 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine ( founded in 1765 as the nation's first medical school ) and the University of Pennsylvania Health System ( created in 1993 as the nation's first integrated academic health system ).

Penn's School of Medicine is ranked #3 in the nation for receipt of NIH research funds; and ranked #4 in the nation in U.S. News & World Report's most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three owned hospitals [Hospital of the University of Pennsylvania, which is consistently ranked one of the nation's few "Honor Roll" hospitals by U.S. News & World Report; Pennsylvania Hospital, the nation's first hospital; and Presbyterian Medical Center]; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

Contact: Karen Kreeger
[email protected]
215-349-5658
University of Pennsylvania Medical Center
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)