RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
  Bacteriology
  Virology
   West Nile Virus
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Virology Channel

subscribe to Virology newsletter
Latest Research : Microbiology : Virology

   EMAIL   |   PRINT
Research team isolates receptor for deadly viruses

Jul 31, 2005 - 2:13:00 PM
"In addition to our concern about Nipah and Hendra viruses as emerging global health and economic threats, we worry about their potential use as bioterror agents," stated Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases, the arm of NIH that funded the research, in an NIH news release. "This work, funded through our biodefense research program, is a major step towards developing countermeasures to prevent and treat Nipah and Hendra viruses."

 
[RxPG] A collaborative research team from the Uniformed Services University of the Health Sciences (USU), the Australian Animal Health Laboratory (AAHL) and the National Cancer Institute (NCI) have made a major breakthrough in efforts to combat two deadly viruses that could be engineered for use as bioweapons. The team isolated the functional receptor for the Nipah and Hendra viruses--naturally occurring and highly pathogenic paramyxoviruses for which no treatments or vaccines are currently available.

Christopher C. Broder, Ph.D., associate professor in USU's Department of Microbiology, and his NIH-funded team of researchers and investigators demonstrated that a cell surface protein called Ephrin-B2 is a functional receptor for both the Hendra and Nipah viruses. Many animal species are vulnerable to these viruses, making the potential for amplification in intermediate hosts and transmission greater. Ephrin-B2 is highly conserved in animals, and this finding sheds light on how these viruses can infest such a wide range of hosts.

"In addition to our concern about Nipah and Hendra viruses as emerging global health and economic threats, we worry about their potential use as bioterror agents," stated Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases, the arm of NIH that funded the research, in an NIH news release. "This work, funded through our biodefense research program, is a major step towards developing countermeasures to prevent and treat Nipah and Hendra viruses."

"Now that we've identified the cell receptor, we have a new target for activity, hopefully blocking the viruses from infecting cells," Dr. Broder explained. Team members Matthew Bonaparte, Ph.D., and Anthony Dimitrov, Ph.D., both at USU, identified the cell receptor by analyzing a human cell line that was resistant to virus infection against two susceptible cell lines. The results of the research were published in the July 26 edition of the Proceedings of the National Academy of Sciences.

"We identified genes that are coded for known and predicted cell surface proteins that were missing from the resistant cell line," Dr. Broder said. "The genes were put into cells that were then exposed to a live virus at AAHL."

Hendra virus was first isolated in 1994 when an outbreak of respiratory and neurologic disease emerged among horses and humans in Hendra, Australia, killing two people. Hendra recently reemerged in Queensland, Australia, and researchers there isolated the virus at the biosafety level 4 facility.

Nipah virus, which is similar to and in the same genus as Hendra, was initially isolated in 1999, when a large outbreak of encephalitis and respiratory illness occurred in Malaysia and Singapore, killing more than 100 people. Last year, two further Nipah virus outbreaks occurred in Bangladesh, killing roughly 75% of those infected. Scientists are disturbed by the fact that many of these recent cases involved human-to-human transmission of Nipah, which originates in bats.

Ephrin-B2 is found on cells in the central nervous system, as well as in cells lining blood vessels. It is essential for central nervous system development and blood vessel growth in the embryos of humans and other mammals.

Broder and his team are among only a handful of scientists focusing on the viruses, which have been under investigation by USU researchers since 2000. Broder is a principal investigator on one of six projects from the Mid-Atlantic Regional Centers of Excellence for Biodefense and Emerging Infectious Diseases funded by NIH.

The research has led to two inventions on which USU and the Henry M. Jackson Foundation for the Advancement of Military Medicine have filed patent applications.

The first patent application, "Soluble forms of Hendra Virus and Nipah Virus G glycoprotein," covers the production and use of the soluble G glycoprotein. This protein has utility as a vaccine, in the development of pharmaceutical compositions and in diagnostic assays. The second patent application, "Compositions and Methods for the Inhibition of Membrane Fusion by Paramyxoviruses," covers the use of a novel peptide sequence of the soluble F glycoprotein, to block fusion of the virus with the host cell. This peptide can be used as a prophylactic, and/or to treat infections, and antibodies developed using this peptide can be utilized in diagnostic assays.



Publication: For information on licensing these patents, please contact Mark G. Scher, Ph.D., HJF Director of Technology Commercialization, at 240-453-8867 or via email at [email protected]
On the web: http://www.hjf.org/ 

Advertise in this space for $10 per month. Contact us today.


Related Virology News
How West Nile virus evades immune defenses
Innovative method for creating a human cytomegalovirus vaccine outlined
Cracking Virus Protection Shield
Viruses trade-off between survival and reproduction
New hybrid virus provides targeted molecular imaging of cancer
Mass spectrometry to detect norovirus particles
xCT molecule is a major gateway for KSHV to enter human cells
Surprising discovery about the inner workings of vesicular stomatitis virus (VSV)
New human retrovirus - Xenotropic MuLV-related virus (XMRV)
Viruses can be forced to evolve as better delivery vehicles for gene therapy

Subscribe to Virology Newsletter

Enter your email address:


 Additional information about the news article
The Henry M. Jackson Foundation for the Advancement of Military Medicine (www.hjf.org) is a private, not-for-profit organization chartered by Congress to support military medical research and education at USU and throughout military medicine.

The Uniformed Services University of the Health Sciences (www.usuhs.mil) was chartered by the U.S. Congress and is a fully accredited DoD graduate-education university.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)